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The ability to navigate is a hallmark of living systems, from single cells to higher animals. Searching for
targets, such as food or mates in particular, is one of the fundamental navigational tasks many organisms
must execute to survive and reproduce. Here, we argue that a recent surge of studies of the proximate
mechanisms that underlie search behavior offers a new opportunity to integrate the biophysics and
neuroscience of sensory systems with ecological and evolutionary processes, closing a feedback loop that
promises exciting new avenues of scientific exploration at the frontier of systems biology.
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In the summer of 1899, Harvard entomologist Alfred
Mayer traveled from Massachusetts to an isolated
island in the Florida Keys with a collection of Prom-
ethea silk moth cocoons. What interested Mayer was a
curious observation: Male moths were able to navi-
gate from great distances to the exact location of a
female. Mayer wanted to know how. Through a clever
series of experiments (1), he showed that males find
females by tracking the pheromones females emit into
the wind. Mayer and his contemporaries, including
Jean-Henri Fabre (2), initiated the study of what is
now one of the most heavily investigated search algo-
rithms in nature: the olfactory search strategies of in-
sects. Over a century later, studies of how insects and
other animals find odor targets have led to major dis-
coveries about the structure and information contained
within chemical plumes (3–5) and the properties of the
nervous system that allow animals to extract and re-
spond to that information in a complex and ever-chang-
ing landscape (6–11).

The search behavior of moths and other species is
inspiring a new generation of scientists to take a closer
look at natural search algorithms, broadly defined as
the behavioral strategies organisms use to find targets.
A recent surge of studies of natural search algorithms
has begun to reveal novel search behaviors in a wide
range of biological systems, suggesting that the need
to search successfully is a strong selective force at many
levels of biological organization. We need only look
within our own bodies to verify both the ubiquity

and significance of search. Immune cells use chemical
signals to navigate to target tissues; when cells fail to
do this, the immune system cannot mount normal
responses to infections (12). Development of the verte-
brate nervous system depends, in part, on chemotactic
search of axonal growth cones (13), and failure of these
cells to locate their targets can cause neurological
disorders.

The study of natural search algorithms presents a
fertile research frontier that merges ideas and tech-
niques from neuroscience, biophysics, and ethology.
Here, we argue that recent research on the mecha-
nistic basis of animal and cellular search strategies has
created a unique opportunity for a dialogue between
scientists studying the biophysical and neural bases of
search, and ecologists and evolutionary biologists,
who study the ecological tasks and selective pressures
that shape search strategies (Fig. 1). This Perspective
is not intended to provide a comprehensive review of
the ecology or evolution of search behavior. Rather,
we focus on two questions—one evolutionary and one
ecological—that have come to light as a result of recent
advances in search research: (i) Do the search strategies
that different kinds of organisms have evolved share a
common set of features? (ii) To what extent do these
search strategies affect the rates of ecological interac-
tions that underpin the functioning of ecological sys-
tems? We provide suggestions for how merging a
mechanism-based understanding of search strategies
with an ecological and evolutionary perspective may
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help answer these questions and lead to new discoveries at the
interface of biophysics, neuroscience, evolution, and ecology.

The Evolution of Search Strategies
The fact that biological entities of many kinds must overcome
what appear, at least on the surface, to be similar challenges in
their search processes raises a question: Has evolution led these
entities to solve their respective search problems in similar ways?
Clearly themolecular and biomechanical mechanisms a bacterium
uses to climb a chemical gradient are different from the neural
processes a moth uses to search for a potential mate. But at a
more abstract level, it is tempting to speculate that the two or-
ganisms have evolved strategies that share a set of properties that
ensure effective search. This leads to our first question: Do the
search strategies that different kinds of organisms have evolved
share a common set of features? If the answer to this question is
“yes,” many other questions follow. For example, what are the
selective pressures that lead to such convergent evolution? Do
common features of search strategies reflect common features of
search environments? Can shared features of search strategies
inform the design of engineered searchers, for example, syn-
thetic microswimmers for use in human health applications (14) or
searching robots (15)?

An example of a common feature of many search strategies is
the use of spatial gradients in the strength or timing of sensory
cues. In Box 1, we describe parallels between the responses of
single cells to chemical gradients, and the responses of single
animals and animal groups to environmental gradients. The im-
portant point is that the use of spatial gradients is a fundamental
part of the search strategies of cells like neutrophils (16) and bacteria
(17), solitary animals like mice and fruit flies (18, 19), and large ani-
mal groups like fish schools (20). In all cases, the searching individual

or group has a means of measuring a signal differential (e.g., dif-
ference in signal strength or the timing of signal arrival between
sensors) over space, and responding to that differential by altering
locomotory behavior in a way that causes the individual or group to
climb the gradient (Fig. 2A).

Modern experimental techniques have been crucial for iden-
tifying the ingredients that enable these gradient-climbing be-
haviors. Studies of biochemical receptors in single cells (23, 24)
and sensory receptor neurons in animals (11) have identified the
raw input available to inform search decisions. In well-studied
microorganisms, such as Escherichia coli, the biochemical path-
ways involved in decision-making are understood thoroughly
enough that models of gradient-climbing can be formulated di-
rectly from the knowledge of intracellular signaling pathways that
govern the gradient response (23–25). In the case of animals, the
neural processes involved in integrating and making decisions
using measurements of a gradient are not as well understood;
however, the key features of the signal integration and decision-
making process can be inferred using experiments that provide
known sensory input and map this input to observed searcher
motions (18, 20, 26). In this way, researchers are beginning to
understand how measurements of spatial gradients lead to
gradient-climbing behavior in a wide variety of model systems.

Although the biophysical and behavioral mechanisms cells,
animals, and animal groups use to respond to gradients differ,
these entities are all capable of readily climbing spatial gradients.
Responding to gradients is, however, just one component of the
set of rules organisms use to guide search behavior (Fig. 2B). In-
deed, orienting using gradients alone suffers from well-known
pitfalls when the environment contains many signal sources (27) or
signals are highly intermittent, as is the case in turbulent chemical
plumes (4). Accordingly, most species likely use gradient-climbing
as one behavioral “module” (21) in a larger set of sensory-motor
responses that, together, generate the long sequences of search
behavior needed to locate targets in large spatial landscapes.
Other modules may include exploratory behaviors that increase
the likelihood that the searcher will encounter sensory cues
emitted by a target—for example, the cross-wind casting of in-
sects (21) and seabirds (28)—and memory-based mechanisms for
returning to previously visited locations: for example, the path
integration-based homing of the desert ant, Cataglyphis bicolor
(22). We define the set of behavioral modules a searcher employs
and the rules the searcher uses to transition between modules as a
natural search algorithm (Fig. 2B). We expect natural selection
to drive the evolution of algorithms that yield high search per-
formance, while balancing fitness costs, such as exposure to
predation risk (29). By developing mathematical descriptions of
natural search algorithms and a more thorough understanding of
the environments in which search takes place, we can begin to
compare the strategies of searchers as diverse as human cells,
bacteria, flies, and schooling fish in quantitative terms.

Mapping the Search Environment. What are the salient features
of the search problems organisms solve in nature? What do target
landscapes look like? What sensory cues do searchers have access
to? These seem like straightforward questions, but even in the
case of well-studied species like E. coli, we know surprisingly little
about their answers (30–32). Without knowing more about the
landscapes in which organisms search, experiments risk being
arbitrary and the connection between experimental findings and
search behavior in natural systems is liable to be loose. Recently,
some important progress has been made toward characterizing
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Fig. 1. The biology of natural search algorithms. Recent studies have
used high-resolution/high-throughput experimental techniques to
quantify search behavior, and tools from neuroscience and biophysics
to dissect the mechanisms involved in sensing and decision-making
during search. These more proximate approaches should be merged
with ecological and evolutionary perspectives to yield a more holistic
understanding of how organisms search the natural world, and how
the process of search relates to ecology and evolution.
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the physical and chemical environment that marine microbes ex-
perience in the ocean (17), the flow environment that influences
search decisions of planktonic predators (33), and the physical
structure and chemical composition of the odor plumes to which
moths and other olfactory searchers respond (5, 10, 11, 34, 35).
These studies notwithstanding, we have little quantitative in-
formation about the structure and spatiotemporal dynamics of the
environments in which most organisms search, largely because of
the difficulty of quantifying spatially and temporally varying cues
in natural settings.

Mapping the structure of the search environment is particularly
crucial in field studies of animal search behavior (36), where the
processes that generate an animal’s movement trajectory are
difficult or impossible to infer without some knowledge of the

sensory cues the animal has access to as it makes movement
decisions (37). Combining technologies for measuring the structure
and dynamics of sensory cues, such as geographical information
system (GIS)-based and computational modeling of water currents
or winds (28, 38), acoustic methods for quantifying the locations of
prey aggregations (39), and onboard sensors that measure real-
time conditions at the animal’s location (40), will dramatically in-
crease what we can learn about search strategies using animal
tracking data from the field.

Cross-disciplinary collaborations could further increase the
value of field data by using direct measurements or simulations to
characterize sensory cues in the field, and then recreating these
sensory landscapes in the laboratory. This will not only help make
experiments more realistic, but may also reveal how organisms
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Fig. 2. Spatial gradient climbing, behavioral modules, and natural search algorithms. (A) Single cells, solitary animals, and animal groups are
capable of measuring and responding to spatial gradients in the environment. These responses involve measuring a signal (e.g., chemical
concentration, light), processing multiple measurements to calculate a spatial differential in signal strength or timing, and responding by altering
locomotory behavior to ascend or descend the gradient. (B) At larger scales, organisms combine responses to spatial gradients with other
behavioral modules [e.g., periods of exploration, memory-based homing to known locations (21, 22)] to generate flexible sequences of search
behavior. We define this set of modules and the rules a searcher uses to transition between them as a natural search algorithm. By developing
mathematical descriptions of natural search algorithms, search behavior can be studied using the mathematical tools applied to analyze
engineered search algorithms.

Box 1
Shared features of search: Sensing and climbing spatial gradients. Detecting and navigating using environmental gradients is a
common feature of the strategies used by a wide range of searchers, from single cells to groups of social animals (Fig. 2A). The
mechanisms through which organisms measure and respond to gradients are diverse, but the outcome of these processes—
ascending or descending local signal gradients—is highly conserved. Eukaryotic cells detect chemical gradients by sensing con-
centration differentials across their length (45), and respond through a variety of motility mechanisms. Bacteria such as E. coli and
Vibrio spp. are too small to directly perceive concentration gradients, but instead detect gradients by measuring changes in con-
centration over time as they swim and delaying reorientations when swimming in a favorable direction (23). Searching animals, in-
cluding humans, use information from paired sensory organs (eyes, ears, nares, antennae) to detect differentials in the strength of
signals or the timing of signal arrival (11, 100, 101), which they use to decide which way to turn in response to a signal gradient (19,
100). Groups of animals also respond to environmental gradients and do so in a coordinated fashion. Schools of minnows are capable
of collectively descending and tracking dynamic light gradients, even amid considerable noise (20). Individuals within these schools
respond not only to measurements of the environment, but also to social cues from nearby group members (Fig. 2A), allowing the
group to act as a spatially distributed sensor that collectively “computes” the signal gradient (63, 102).

Although single cells, solitary animals, and animal groups all use spatial gradient sensing as a component of their search strat-
egies, a quantitative framework for exploring these similarities is lacking. In examining similarities more deeply, it will be important to
consider how gradient climbing fits into the broader set of rules that constitute an organism’s search strategy (Fig. 2B). For example,
mice use spatial gradients in scent concentration as well as exploratory movements to locate odor targets in novel environments, but
over time, rely increasingly on learned information about the location of targets to navigate more efficiently (18). Bacteria combine
random search with directed gradient climbing and rescale their responses by adapting to prevailing conditions, which increases the
dynamic range of their search capabilities (42, 103). Developing a common mathematical formalism that can connect gradient
climbing and other components of search strategies with the structure of real search environments will facilitate more rigorous
comparisons between microbes, animals, and animal groups, and help uncover shared features.
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distinguish relevant environmental signals from irrelevant ones.
For example, when approaching flowers from short distances,
moths in the wild encounter filaments of high odor concentration
that arrive at time intervals within a relatively narrow frequency
range (10). In wind-tunnel experiments with moths, odors that are
pulsed in this natural frequency range cause strong firing re-
sponses in central olfactory neurons, and elicit stereotyped search
behavior, whereas odors outside this range elicit weak responses
at both the neural and behavioral levels. At greater distances from
an odor source, pulses of odor are far more intermittent, yet moths
and other insects are still able to distinguish relevant olfactory
cues from noise and to use these cues to navigate (5). The neural
mechanisms that underpin this long-range response to odors are
still poorly understood, but quantitative characterization of odor
landscapes has provided crucial clues (5, 11).

Another advantage of quantitatively characterizing natural
search environments is that doing so may help answer long-
standing questions about the features of sensory systems. Many
chemosensory organs are exquisitely sensitive to variations in
chemical concentration. Dictyostelium cells can detect concen-
tration gradients amounting to differences in the occupancy of
only five chemoattractant receptors between the up-gradient
and down-gradient sides of the cell (41). Silkmoths detect and
respond to as few as 170 molecules of sex pheromone by tem-
porally integrating subthreshold activity of olfactory receptor
neurons (8). Sensitivity often comes at the cost of susceptibility
to noise, raising the question of what kinds of environmental
conditions could have selected for such extreme sensitivity.
Some species cope with the sensitivity–susceptibility trade-off
by rescaling their responses to stimuli via adaptation, allowing
them to respond to cues across a wide dynamic range; bacteria,
for example, retain high sensitivity to chemical gradients over
several orders-of-magnitude in chemical concentration (42).
However, this too comes at a cost. Rescaling their response to
gradients by overall chemical concentration means that bacteria
respond to high- and low-concentration sources in the same
way, an outcome that may or may not be desirable depending
on the environmental and ecological context in which these
species search (42) (see also ref. 32 for further discussion of the
drawbacks of sensory adaptation). Quantitatively studying the
signal and noise landscapes that searching organisms navigate
(43) may help us understand why evolution has selected for
sensory systems that both adapt and, in some cases, operate
close to the physical limits of sensitivity (44, 45).

Convergent Evolution and Shared Features of Effective

Search Strategies. One might expect to find convergent search
strategies across a diverse array of biological systems if some
general features distinguish good search strategies from poor
ones. Several studies have proposed statistical properties that
could serve this role. One hypothesis posits that searchers can
achieve robust search performance by using a strategy that is
“maximally informative” (46), in the sense that the searcher makes
decisions that maximize the rate at which it reduces uncertainty
about the location of its target (4). Maximizing the rate of in-
formation gain would appear to require fairly sophisticated neural
or biochemical machinery; however, at least in simple environ-
ments, a heuristic that approximates a maximally informative
search can be implemented by a decision circuit containing a
surprisingly small number of components (46). Recent research
efforts have begun to explore whether search strategies and be-
havioral circuits can be understood in more general terms by

studying how they affect information acquisition from the envi-
ronment (31, 47).

A second feature that may prove to be shared among search
strategies is risk-aversion. For example, the chemotactic search
algorithm used by E. coli does not maximize the rate at which cells
reach local hotspots of high chemical concentration, but instead
maximizes the minimum chemical concentration the cell will ex-
perience over a wide range of possible environmental conditions
(48). Similarly, it has been argued that some animal foraging
strategies do not maximize the rate of resource acquisition, but
instead ensure that the animal acquires a minimum required
quantity of resources (often called “satisficing”) (49). Such strat-
egies serve to minimize the risk of bad outcomes in uncertain
environments, often at the cost of underperforming when the
environment is favorable. Whether a strategy appears risky or risk-
averse, however, may depend on how risk is measured. For ex-
ample, in the ocean, male copepods search for mates by adopting
a swimming pattern that makes them conspicuous to predators
(50). This strategy may lower the risk of not finding a mate but it
increases the risk of predation.

Determining whether different kinds of organisms use strate-
gies that maximize the rate of information gain, minimize risk, or
involve other shared properties requires formal methods of
comparison. By studying search behavior through an algorithmic
lens, we can begin to apply existing frameworks from the rich field
of engineered search algorithms to better understand the fea-
tures of search strategies in nature. Mathematical tools from re-
inforcement learning (51), information theory (47), and operations
research (52) are commonly used to design and evaluate engi-
neered search algorithms, but they may also provide a way of
making quantitative comparisons between natural search algo-
rithms. To take advantage of these tools, we propose a systematic
approach (Fig. 3), in which field and laboratory studies of model
organisms are used to identify the salient features of natural
search environments and constraints on sensing and decision-
making in real biological systems. These features can then be
mapped onto an appropriate algorithmic framework for modeling
search behavior and for comparing the search strategies of dif-
ferent kinds of organisms (Fig. 3).

A particularly promising mathematical tool, often used in op-
erations research, is the multiarmed bandit framework (MAB) (53).
This framework models a sequence of actions taken by a decision-
maker or set of decision-makers, in this case the searchers. Each
action yields a reward and the success of different decision-
making strategies can be compared over time. The term “bandit”
is an analogy to a slot machine, and the “arms” refer to the set of
choices the decision maker has available to it. This framework is
powerful because it allows one to compare search strategies to
one another and to theoretical performance bounds (54, 55). MAB
models are among the simplest models of decision-making that
capture the essential challenges associated with making choices
amid uncertainty about the state of the environment; however, a
crucial feature of the MAB framework is that it can be extended to
include important physical and neural constraints on the search
capabilities of real organisms (e.g., limited memory, limited per-
ception of space, and so forth). For example, this framework has
recently been extended to accommodate spatial constraints on
the choices an individual can make, and transition costs incurred
when moving from one choice to another, key characteristics of
search problems in spatial landscapes (56), where moving costs
energy (57) and can expose a searcher to predation risk (29).
Mapping natural search algorithms onto theMAB framework would
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constitute a major step toward a quantitative understanding of
the similarities and differences between search strategies. Recent
studies of the neural and biophysical mechanisms involved in
search behavior (6, 7, 9, 10, 46, 58) provide the quantitative in-
formation needed to define such models in a way that respects the
constraints on search strategies in real biological systems.

To better understand how evolution shapes search strategies
over the long term, modeling approaches like MAB models can
be combined with tools, such as game theory (48, 52, 59–61) and
simulated evolution (30, 62, 63) (Fig. 3). The most complex of
such models combine behavioral simulations of entire pop-
ulations of heterogeneous individuals with computational evo-
lution of populations of searchers over time (30, 62, 63). Such
models are extremely flexible and allow one to include detailed
knowledge of environmental structure, biophysics and neuro-
science of sensing, decision-making, and motility specific to
particular model systems. This flexibility may come at the cost of
generalizability, but simpler approaches from evolutionary game
theory can help distill the results of detailed computational
models into a form that can be more readily applied to other
systems (64).

To realize the connection between experimental studies of
search behavior and the theoretical tools described above,

collaborations between behaviorists, neuroscientists, and eco-
logical and evolutionary modelers are needed. Many organisms
studied in the laboratory readily execute search behaviors and
research groups are already using techniques like computer vi-
sion, virtual reality, microfabricated landscapes, and optogenetics
to measure and manipulate search behavior and to link sensory
input to behavioral output (8, 65–67). The high-resolution data
such studies generate provide the kind of information needed to
build and parameterize mathematical models of search strategies.
Theoreticians and experimentalists could benefit by working to-
gether to develop and test such models. In addition to revealing
underlying similarities and differences among search strategies,
models that are carefully linked to experimental systems could
identify steps in the search process that strongly influence per-
formance, but are poorly studied experimentally. More generally,
the approach described in Fig. 3 may help reveal the broader
biological relevance of search behaviors identified in individual
model systems. An active feedback between mathematical models
and data will be crucial if we are to understand, at a more funda-
mental level, how evolutionary forces structure the search strate-
gies in the world around us.

Search Strategies and the Pace of Ecological Interactions
The fact that search behavior is ubiquitous in biological systems
and that organisms appear exquisitely adapted to finding their
targets leads us to our second question: To what extent do search
behaviors affect the rates of ecological interactions that underpin
the functioning of ecological systems? Examples of ecological
interaction rates are the rate at which male and female copepods
encounter one another in the turbulent sea (50), the rates at which
marine bacteria find and attach to nutrient particles (68), or the
rate at which foraging seabirds locate prey aggregations (28).
How do the search behaviors of anchovy schools influence the
rate at which these species locate and consume their prey (39)?
How do the search strategies of neutrophils and T cells influence
the overall rate at which the immune system can suppress
infections?

The answers to these questions could change the way we
model the dynamics of biological systems. This is because sen-
sory-mediated search behavior is largely absent from population
dynamic theory, the theory typically used to describe the dy-
namics of populations of organisms or cells. Ecologists have long
appreciated that natural environments are dominated by patchi-
ness (69), and that the way organisms respond to this patchiness
can influence the pace and outcome of ecological interactions
(70). However, a historical lack of quantitative information about
search behavior has made it challenging to incorporate these
responses into ecological models. With the increasing availability
of tracking data from animals in the wild (36, 71) and from carefully
designed laboratory experiments (67, 72), and growing knowl-
edge of the search behaviors of a widening range of organisms, it
may soon be possible to formulate models of ecological in-
teraction rates in a way that incorporates active search. The
challenge will be finding a tractable means of moving from indi-
vidual-based descriptions of how organisms search their envi-
ronments, to macroscopic descriptions of the rates of interactions
among populations of organisms.

Search and Ecological Dynamics: Model Systems as a Way
Forward
Several recent theoretical studies have developed models of
ecological interaction rates in ways that explicitly consider how
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features are then used to select a modeling framework (e.g., MAB)
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selective pressures that lead to convergent or divergent search
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organisms use sensory cues to modify search behavior (57, 73–75).
Results of these studies demonstrate that active search behavior
can both qualitatively and quantitatively change the population
dynamics of consumers and resources, and affect the outcome of
competition between searchers and nonsearchers. For example,
Hein and McKinley (74) developed a simple model of search
decision-making, which showed that when consumers search for
resources using sensory cues, consumer-resource encounter rates
can diverge strongly from the mass-action kinetics assumed in
most models of consumer–resource interactions. This departure
from mass action qualitatively alters the dynamics of consumer
and resource populations. Such models provide starting points
for future theoretical investigations; however, attempts to un-
derstand whether and how search behavior influences ecological
dynamics will be most effective if new ecological theory can be
tied to model systems in which search behavior and its effect on
ecological dynamics can be measured directly. A promising
model system involves marine bacteria, because of their large
numbers and the relative simplicity of quantifying their search
behaviors (76).

Microscopic marine autotrophs are responsible for roughly
one half of Earth’s primary productivity, and much of this pro-
ductivity becomes available to the rest of the marine food web
only after being consumed by bacteria and other microorganisms
(77). Understanding the processes whereby microorganisms lo-
cate, consume, and convert primary productivity to energy and
matter that fuel marine food webs is, therefore, a high priority.
Like most ecological models, many oceanographic models rest
on the assumption that microbes passively encounter dissolved
organic matter (DOM) and that DOM is distributed homoge-
neously throughout the water (77). However, even at very small
scales, localized DOM releases, augmented by turbulence, can
create ephemeral resource hotspots that are separated by voids
where resources are scarce or absent (17, 78). Many microor-
ganisms exploit this heterogeneity by using chemotactic search
to actively seek out hotspots and, in doing so, consume resources
at rates that are far higher than would be expected in the absence
of active search (57, 76, 79, 80). Estimates as well as measure-
ments of the importance of chemotactic search for lysing phy-
toplankton cells, marine particles, and the plumes of DOM that
leak from them as they sink, suggest that chemotactic behavior
may enhance bacterial reproductive rates by several fold (76, 78,
81). For example, during phytoplankton blooms, bacterial spe-
cies that are capable of chemotactic search can capitalize on
localized nutrient pulses to generate threefold greater biomass
than competing populations of bacteria that do not perform
chemotaxis (76).

Patchiness in nutrient environments can also facilitate the
coexistence of bacteria that use different search strategies. Two
very closely related populations of Vibrio cyclitrophicus, spe-
cializing in particle colonization by biofilm formation and particle
exploitation by chemotaxis, respectively, are able to coexist through
a “competition-dispersal” trade-off (68). These and other findings
(e.g., refs. 57 and 80) suggest that by incorporating active microbial
search behavior into models of marine microbial ecology, we may
be able to understand ecological interactions and ecosystem pro-
cesses in the microbial ocean at a much deeper level. Moreover,
these findings illustrate that concepts that are familiar in theoretical
ecology (70), such as trade-offs between competitive dominance
and the ability to locate new resources quickly, emerge in dynamic,
patchy ecosystems through the interplay of environmental hetero-
geneity and active search behavior.

Studies of chemotactic search in marine microbial systems
provide a blueprint for how search behavior might be in-
corporated into models of other ecological systems. Several fac-
tors have made this synthesis possible. First, researchers have
begun to develop a quantitative understanding of the resource
landscape in which marine microbes search (particles, plumes,
lysis events), the biochemical properties of targets (DOM hot-
spots), and the physical processes (molecular diffusion, particle
sinking, turbulence) that influence how that distribution changes
over time (17, 82). Second, researchers have built upon the long
history of studies of the mechanisms behind E. coli chemotaxis
(23) by using microfluidics, video microscopy, and automated
tracking tools to refine our understanding of the search behavior
of E. coli and extend it to other microorganisms in controlled
microenvironments. Direct visualization of microbial motility
under highly controlled physical (e.g., presence of surfaces,
fluid flows) and chemical (e.g., nutrient particles, steady gradi-
ents, diffusing resources) conditions has yielded quantitative
information about microbial movement and search strategies
across a broad range of environmental conditions (67, 83, 84).
Third, early individual-based models have described the be-
havioral modules involved in bacterial chemotaxis in mathe-
matical terms (85, 86), which has allowed researchers to estimate
behavioral parameters from data and simulate search behavior
of entire populations. Combining these models with high-per-
formance computational tools (57, 87) has provided a way to
connect the search behavior of individual bacteria with pop-
ulation dynamics. This, in turn, is leading toward the kinds of
scalable mathematical models that can answer questions about
how chemotactic search affects ecosystem processes at much
larger scales (76, 82).

Similar synthesis may soon be possible in other systems. For
example, researchers have started to develop a quantitative un-
derstanding of the sensory cues and search strategies used by
insect vectors of human disease (66) and foraging marine preda-
tors (28, 38) alongside the processes that generate relevant sen-
sory cues in the environments where these species live (34, 38,
88). Using this knowledge to develop new ecological models will
likely improve our understanding of system-level phenomena,
such as rates of nutrient cycling in the oceans (76, 89), disease
outbreaks from environmental reservoirs (90), and the outcome of
interactions between invading pathogens and our own immune
systems (91), all of which involve enormous numbers of ecological
interactions between searchers and their targets.

Conclusions and Prospects
We have focused on emerging connections between the bio-
physical and neural basis of natural search algorithms and the
ecological and evolutionary processes that both shape and are
shaped by them. The topics we have covered connect deeply with
central questions in the study of behavior, evolution, and ecology:
for example, the question of how organisms decide whether to
explore or exploit their environments (92); how organisms make
decisions with limited information (93, 94); how the social context
in which foraging decisions are made can shape the evolution of
decision-making strategies (61, 95, 96); how and why motility has
evolved so often throughout evolution (97, 98); and how envi-
ronmental patchiness and behavioral responses to that patchiness
can affect the rates and outcome of ecological interactions (69,
70). Knowledge of the proximate mechanisms that organisms
use to capture and integrate sensory information will help ad-
dress these and other fundamental ecological and evolutionary
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questions. The flow of ideas can and has also moved in the op-
posite direction; understanding the selective pressures imposed
by the need to search effectively and the physical properties of
search environments can help to reveal the function of neural and
biophysical structures (e.g., bursting olfactory receptor neurons)
(11, 58), and may also help explain the striking sensitivity of many
sensory organs (8, 45, 99). Progress in these and other areas will
benefit from a more formal integration of studies of sensory bi-
ology and decision-making, the physics and ecology of search
environments, and the evolution of search strategies by natural
selection. By combining these approaches, we may find a path

toward realizing one of the emblematic goals of systems biology:
linking the molecular workings of sensory and decision-making
systems to the processes that drive populations, communities,
and perhaps even ecosystems.
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